Incremental Linear Discriminant Analysis for Data Dimensionality Reduction 学术讲座
正在加载播放器...若长时间无响应,说明播放器不支持您当前使用的浏览器。请尝试更换其他浏览器观看。
相关推荐

暂无相关推荐

上传人:admin 上传时间:2017-10-23

视频描述: [主讲人: Prof. Delin Chu] [时间: 2013-06-06 15:30:00] It has been a challenge problem to develop fast and efficient incremental linear discriminant analysis (LDA) algorithms although several incremental LDA algorithms have been proposed in the past. For this purpose, we conduct a new study on LDA in this paper and develop a new and efficient incremental LDA algorithm. We first propose a new batch LDA algorithm called LDA/QR which only depends on the data matrix and the sizes of data classes. LDA/QR is obtained by computing the economic QR factorization of the data matrix followed by solving a lower triangular linear system. Hence, LDA/QR is a simple and fast LDA algorithm. The relationship between LDA/QR and Uncorrelated LDA (ULDA) is also revealed. Based on LDA/QR, we develop a new incremental LDA algorithm called ILDA/QR which is the exact incremental version of LDA/QR. The main features of our incremental LDA algorithm ILDA/QR include: (i) it can easily handle not only the case that only one new sample is inserted but also the case that a chunk of new samples are added; (ii) it has pleasant computational complexity and space complexity; and (iii) it is very fast and always achieves comparative classification accuracy compared with ULDA algorithm and existing incremental LDA algorithms. Numerical experiments using some real world data demonstrate that our ILDA/QR is very efficient and competitive with the state-of-the-art incremental LDA algorithms in terms of classification accuracy, computational complexity and space complexity.